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Abstract. Model-Based Systems Engineering (MBSE) has become increasingly popular within 

the aircraft industry in recent years. However, this model-based approach presents a challenge as 

traditional safety analysis practices are unable to keep up, resulting in inconsistency between the 

system and safety domains. This paper proposes a methodology tailored towards aircraft systems 

that addresses this issue by integrating safety analysis into MBSE. This is achieved by extending 

the Systems Modeling Language (SysML) profile to account for safety data in the system model 

and utilizing an Application Programming Interface (API) to automate the generation of safety 

analysis artefacts. The proposed methodology also allows for requirements management 

integration to increase the efficiency of the system development process. 

Introduction 

In recent years, the development of large, integrated systems within the aerospace industry has 

become increasingly complex and competitive (Gabbai 2005). Aircraft manufacturers and Tier 1 

suppliers are expected to develop innovative systems in less time while maintaining a high degree 

of flexibility to keep up with clients’ changing demands. In response to these needs, many 

companies within the industry are adopting Model-Based Systems Engineering (MBSE) to 

develop their systems (Howard 2018), hence moving from a document-centric approach to a 

model-centric one. Moreover, for a safety critical platform such as an aircraft, safety analysis is an 

essential part of the development cycle to ensure the integrity, quality and robustness of a design. 

However, as defined in the SAE Aerospace Recommended Practices, ARP4754A (SAE Aerospace 

2010) and ARP4761 (SAE International 1996), system development and safety assessment 

processes are interdependent and iterative. Problems arise as safety analyses are typically 

performed separately by safety engineers and extraction of information from the system model is 

done manually. Designs tend to evolve continuously, resulting in analyses being performed on 



   

  

 

outdated versions of the model, and thus wasting time and money. Thus, to remain consistent with 

the design while remaining error-free, the integration of safety analysis into MBSE is essential. 

System and safety engineers can then work on the same model concurrently, allowing for 

improved efficiency, reliability and traceability. 

The purpose of this paper is to provide insights into the various available methods for integrating 

safety analysis into MBSE and to propose a clear methodology that can be used directly in 

industry. The objectives are to: 1) allow for the automatic generation of FHA, FMEA and FTA, 2) 

enable manual edits made in these generated safety analysis artefacts to be propagated back into 

the model and 3) achieve traceability of model elements to requirements. With this approach, the 

increased efficiency and reliability of the development processes will allow companies to become 

more competitive and deliver safer systems, ultimately resulting in the production of safer aircraft. 

Current Status of Safety Analysis 

In practice, safety analysis is often performed independently with different tools by safety 

engineers and occurs relatively late in the design process. In cases where the design has already 

been finalized before safety analysis is complete, the opportunity to influence design decisions and 

make the required modifications is missed (Leveson 2018). These late changes can be extremely 

costly, as the removal of design faults detected during the design phase is up to six times more 

costly than it would be in the early concept phase (INCOSE 2015). This multiplier can even 

increase to 100 at the development stage and 1000 at the production/testing stage. In addition to 

this, in order to perform safety analyses, safety engineers must first extract information from the 

system model, and as the system model evolves continuously, this results in safety analyses being 

performed on obsolete designs (Baklouti et al. 2019). Therefore, early integration of safety 

assessment and earlier validation of system safety requirements is crucial. 

The Purpose of Model-Based Safety Analysis 

Model-Based Safety Analysis (MBSA) provides an approach to tackle these problems by having 

system and safety engineers work on a common model as shown in Figure 1. The system model on 

which the safety analysis is performed can be updated in real-time, thus preventing work from 

being done on outdated information. The use of a common model also encourages safety 

requirements to be considered at the early conceptual design stages which can help reduce the 

number of iterations and design changes further down the line (Mhenni, Nguyen & Choley 2013). 

Furthermore, the use of models allows for automation, such as the automatic generation of Fault 

Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA), and increased traceability 

between requirements and design components. The automatic generation of safety analysis 

artefacts reduces the overall development time, decreases error proneness and thus enables safety 

engineers to become more efficient (Mhenni 2014).  

The deployment of MBSA can greatly improve the reliability and efficiency of safety analysis 

activities, and this is the main reason why many industry practitioners have started employing or 

investigating this approach (Li, Gong & Su 2014). By integrating safety analysis into the MBSE 

processes, companies are able to develop complex and innovative systems in less time, at a lower 

cost and can respond quickly to clients’ changing demands. However, it is worth noting that 

despite using a shared model in this model-based approach, the system design and safety data are 



   

  

 

organized in a way which allows system and safety engineers to edit the model simultaneously 

without causing conflict. 

 

Figure 1: Use of a Shared Model for Safety Assessment and System Development, Adapted from 

Previous Works (Stewart et al. 2019; SAE Aerospace 2010) 

Review of Existing Methodologies 

This section will provide a discussion of existing methodologies that allow for a Model-Based 

Safety Analysis approach to be used. In order to narrow the scope of research and be relevant to 

aircraft systems, the focus will be on works using SysML as the modeling language. The existing 

work can be largely grouped into two methods, model-to-model transformation and an extension 

of the modeling language, both of which will be described in more detail below. 

Model-to-Model Transformation 

The concept behind the model-to-model transformation method is to take advantage of existing 

safety tools to perform safety analysis and automatically generate FTAs and FMEAs. To achieve 

this, the system model is transformed into a form that can be processed by such existing tools. The 

two methods that will be discussed in this section both propose transformations to AltaRica, which 

is a formal modeling language developed specifically for safety analysis that allows for the 

modeling and simulation of failure events (Batteux, Prosvirnova & Rauzy 2017). 

SMF-FTA Methodology. Yakmets, Jaber & Lanusse (2013) presented the Safety Modelling 

Framework for Fault Tree Generation (SMF-FTA). SMF-FTA is a framework that introduces a 

model transformation tool and verification algorithm to integrate safety analysis into MBSE. The 

fundamental step in this process is to use a converter program embedded within the safety tool to 

convert the SysML system model into AltaRica language. Existing tools can then take the 

AltaRica models and derive minimal cut sets, thus automatically generating fault trees. A problem 

that arises with this approach is that even though an embedded checker, ARC (AltaRica Checker), 

exists within the AltaRica toolset, there can still be errors resulting from the model transformation 

that are not recognized by the tool. Ultimately, safety engineers must manually check the AltaRica 

models and make corrections regardless of the ARC verification results. 



   

  

 

MéDISIS Methodology. David, Idasiak & Kratz (2010) proposed the MéDISIS methodology 

which enables the automatic creation of a preliminary FMEA report from functional behaviors 

modeled in a system model. To achieve this, an algorithm in XML (Extensible Markup Language) 

is used to analyze and organize data from the system model. The model is then transformed into 

the AltaRica language, and external tools are used to generate reliability indicators and identify 

causes of failure. Finally, a manual review from safety engineers is needed to complete the final 

FMEA. Once again, this methodology takes advantage of existing tools that can perform various 

safety analysis activities on an AltaRica model. The advantage MéDISIS holds over the SMF-FTA 

methodology is the addition of a Dysfunctional Behavior Database (DBD) as a repository to 

manage safety data and the propagation of any modifications. Nevertheless, there is still a need for 

domain expert completion at every iteration. 

Extension of Modeling Language 

In contrast, the main concept of the modeling language extension approach is to extend the SysML 

profile to include concepts from the safety domain. This allows safety data to be added to the 

system development model, hence making it possible to directly generate safety analysis artefacts, 

instead of the need for a model transformation as discussed above. The Systems Modeling 

Language, SysML, is an extension of the Unified Modeling Language (UML) which was first 

developed as a generic modeling language in the software field. It has a profile extension 

mechanism that allows users to customize the UML profile for a particular domain, and therefore 

SysML can also be extended to suit the users’ needs. Examples of approaches which extend the 

modeling language are discussed below. 

Phillip Helle’s Methodology. Helle (2012) describes a proposed method with such an approach 

involving extending the SysML profile. Safety requirements are introduced as textual elements 

and subsequently formalized into Failure Cases which are modeled as SysML Use Cases. These 

Failure Cases are introduced into the SysML metamodel and connected to the functional 

architecture of the system model. As Helle’s method specifies IBM Rhapsody as the modeling 

tool, this allows the use of the Rhapsody API for Java programs to be used to create a program to 

read the model and extract relevant data. The program then calculates and determines the failure 

rate of certain components, and hence whether a design would be accepted depending on the 

imposed allowed failure probability. With this, safety analysis is integrated within the system 

development process and system engineers can obtain safety related feedback on their design 

decisions immediately. However, as acknowledged by Helle, this approach cannot be a substitute 

for safety analysis for certification and should only be used to support the design of safer systems 

and checking against preliminary safety requirements. 

SafeSysE Approach. Another approach named SafeSysE was proposed by Mhenni, Nguyen & 

Choley (2018). This approach is directly applicable to the development of aircraft systems as it 

facilitates the automatic generation of FTAs and FMEAs from the architecture model. Various 

new stereotypes and attributes are introduced with the purpose of storing information such as 

failure modes and rates, severity, causal factors and failed states, all of which are used in the 

creation of safety artefacts. As the SafeSysE method uses SysML, the models can be exported as 

XMI (XML Metadata Interchange) files, which are then given as inputs to a Python developed tool 

that is specifically created to extract the desired safety data from the XMI files. Finally, the tool 

uses this data to construct FMEAs and FTAs as needed. 



   

  

 

A useful functionality of SafeSysE is the capability to propagate changes made by safety engineers 

in the outputted FMEA worksheets back into the system model via the Python tool. However, the 

absence of any connections to safety requirements means that this method is lacking one of the key 

aspects of safety analysis. 

Existing Methodologies Summary 

The four methodologies described in the preceding section represent proposed methods that aim to 

integrate safety analysis into MBSE, thus effectively implementing MBSA. The key 

functionalities each method addresses are summarized in Table 1. 

Table 1: Comparison of Various MBSA Methodologies 

 Model-to-model Transformation Extension of SysML 

Key Functionalities SMF-FTA MéDISIS Helle’s 

methodology 

SafeSysE 

methodology 

Capture of 

requirements 

No. Not 

considered. 

Captured as text 

in the system 

model with 

traceability to 

components. 

Captured as text 

in the system 

model and 

formalized into 

failure cases. 

None. 

Identifying design 

acceptance based 

on failure 

probability 

No. Not 

considered. 

Yes. Generated 

via AltaRica 

model. 

Yes. Generated 

via Java 

program. 

No. However the 

infrastructure 

needed to do this 

is available. 

Auto-generation of 

FTA 

Yes. Generated 

from AltaRica 

model. 

Not mentioned 

but achievable 

with AltaRica 

model. 

None. Yes. Generated 

via XMI files 

with a Python 

program. 

Auto-generation of 

FMEA 

No. Yes. Generated 

via XML 

algorithm. 

None. Yes. Generated 

via XMI files 

with a Python 

program. 

Flexibility with 

different modeling 

tools 

Yes. Valid for 

all tools 

compatible 

with SysML. 

Yes. Valid for 

all tools 

compatible with 

SysML. 

Only applicable 

to Rhapsody. 

Yes. Valid for 

all tools 

compatible with 

SysML. 

Propagation of 

manual edits in SA 

artefacts back into 

the system model 

No. Must be 

done manually. 

Yes, using DBD 

model. 

N/A. Yes. 



   

  

 

Analysis of Existing Works 

Practically speaking, model-to-model transformation methodologies are simpler to implement as 

they make use of existing safety analysis technologies and their capabilities. AltaRica models are 

already used for safety assessment at many major companies within the aerospace industry and 

hence tools are well developed and, in some cases, even certified (Bozzano et al. 2015). As it is 

commonly used, it is likely that no extra training is needed for safety engineers to perform 

verification and modifications on the safety model. 

On the other hand, the benefit of extending the modeling profile (SysML) is that it allows both 

system design and safety analysis to be performed in a single tool. It removes the need to carry out 

model-to-model transformations from a systems engineering domain to the safety domain. The 

avoidance of this process decreases the likelihood of errors resulting from the transformation 

process and can save time. 

Nevertheless, as acknowledged by both papers, the auto-generated safety analysis artefacts from 

these models cannot be used as the final source of truth and must be reviewed by safety engineers. 

As defined by aerospace standards, safety certification must still be carried out independently; 

hence a model-based approach can only support the generation of preliminary analysis and cannot 

be viewed as a substitute method. 

Identifying Objectives 

From the above analysis, it is identified that there are two key functionalities omitted from existing 

methodologies. The first missing functionality is the lack of an active traceability between model 

elements and requirements. Safety requirements are an essential part of the safety assessment 

process and hence must be updated continuously as safety analysis is performed. Within the 

aerospace industry, the management of system requirements and validation and verification 

activities is typically done using requirements modules. These are often stored in a separate 

requirements management tool such as DOORS. Of the two methods analyzed above that do 

consider requirements, they are only stored as text within the system model. Due to the lack of 

traceability between these textual requirements in the model and the requirements modules, 

modifications or creation of new requirements due to safety analyses are not reflected and would 

require manual tracing. The second aspect missing in existing methodologies is the generation of 

Functional Hazard Assessment (FHA) documents. This is crucial as according to the ARP4761 

standard, it is the first step in the Safety Assessment Processes that is performed on new or 

modified aircraft programs. 

As a result of the research and analysis into related works, the proposed methodology, which will 

be detailed in the following section, should accomplish the following objectives: 

1. Automatic generation of FHA, FMEA and FTA 

2. Propagation of manual edits in the generated safety analysis artefacts back into the model 

3. Traceability of model elements to requirements modules 



   

  

 

Proposed Approach 

In this section, a methodology for implementing MBSA involving the extension of the SysML 

profile will be introduced. This methodology is designed to provide a more complete approach to 

integrating safety analysis and is built on leveraging existing SysML functionalities, hence giving 

it the flexibility to be used with different modeling tools. 

Overall Process 

The key element of this approach is the extension of the SysML profile. This allows the safety 

model containing all relevant safety data to be stored together with the system model in what is 

referred to in Figure 2 as the architectural model. During the design phase, it is crucial that safety 

analysis is performed on the latest version of the system design. It is also equally as important that 

the analysis results, along with any newly generated safety requirements are incorporated back 

into the design. To facilitate this, it is proposed that a Safety Application is created which has the 

ability to access, change, add to and delete model elements in the architectural model through an 

API. The Safety Application is designed to be capable of automatically generating FHA, FMEA 

and FTA using safety data extracted from the model. Similarly, changes made by safety engineers 

to these documents can be propagated back into the model via the API without them having to edit 

the model itself. As modifications by either system or safety engineers must first pass through the 

application, changes can be tracked easily, thus supporting change management activities. The 

benefits of having the Safety Application is that even though some modeling tools have the 

functionality of generating tables directly, the application can format the tables in a way that is 

familiar to safety engineers. In addition, using the application can enhance user experience as it 

provides a common platform where safety engineers can obtain all the information they require, 

instead of going through multiple tools. 

 

Figure 2: Overall Process of Proposed Methodology 

On the other hand, in order to maintain traceability between model elements and safety 

requirements, the requirements module and architectural model will need to be hosted on a 

common platform, as shown in Figure 2. This allows requirements to be directly linked to the 

relevant model element, making it easier to manage and trace compliance and for modifications 

made in either tool to be automatically reflected. A model checker tool can also be used within the 

architectural model to check that all safety requirements in the module are addressed by a model 

element. Results from the model checker can either be exported to the common platform through 

the API or kept within the modeling environment, depending on the users’ preferences. 



   

  

 

Tools Selection. For any organization to deploy this methodology, an assessment of tools must 

first be performed to identify a tool set that best fits with the organization’s needs. For illustrative 

purposes in this paper, the IBM Engineering Lifecycle Management (ELM) tool set is selected, 

however it should be acknowledged that other tools can be used. 

Using the IBM ELM tool set means that architecture models are developed in IBM Engineering 

Systems Design Rhapsody (Rhapsody) and requirements modules are managed in IBM 

Engineering Requirements Management DOORS Next (DOORS Next). These IBM ELM tools 

are designed to work together to offer full traceability across the engineering process, hence both 

Rhapsody and DOORS Next are hosted on the IBM Jazz platform. This allows requirements to be 

automatically loaded into the architectural model, and if any requirements are added or updated as 

a result of safety analysis, they can be immediately synchronized into the model as well. System 

engineers are then notified of the changes and can then verify if the design still satisfies all the 

requirements. In addition, Rhapsody also comes with a Java API and an internal model checker 

which allows the proposed methodology to be implemented smoothly. 

Metamodel Overview 

As mentioned previously, SysML is used as the basis for metamodel extension and hence the 

notations used to illustrate the extension will also adhere to SysML definitions. SysML is chosen 

as the basis for the proposed methodology since it is commonly used by companies within the 

aircraft industry and it is “the de facto standard architecture modeling language for MBSE 

applications” (SysML Forum 2003). In this section, only elements that are introduced as part of the 

safety profile in addition to the existing standardized SysML metamodel will be discussed. All 

other elements and relations will remain the same and these can be found in specifications 

documented online (Object Management Group 2019) or in books such as A Practical Guide to 

SysML (Friedenthal, Moore & Steiner 2014). 

To construct new elements, stereotypes are created by either extending existing UML/SysML 

meta-classes or specializing from existing elements as shown in Table 2. 

Table 2: New Metamodel Elements 

New metamodel elements Relation to UML/SysML 

System Stereotype of SysML Block 

Component Stereotype of SysML Block 

Function Stereotype of SysML Operation 

FailureCondition Stereotype of SysML Property 

FailureMode Stereotype of SysML Property 

FaultTreeDiagram Specialization of UML BehaviorDiagram 

NominalState, DegradedState, FailedState Specialization of UML State 



   

  

 

These newly introduced metamodel elements are created for the purpose of capturing safety data 

within the architectural model and to support the automatic generation of FHA, FMEA and FTA. 

This also allows for FTAs to be stored within the model and for dysfunctional behavior to be 

modeled in State Machine Diagrams. However, it is worth mentioning that since safety 

certification must still be carried out independently as per aerospace standards, the generated 

safety analysis artefacts would only act as a preliminary document and would still need to be 

verified by safety experts. 

An overview of the relationships among these new elements is modeled by the class diagram in 

Figure 3. The key specifications represented by this diagram are: 

• A system can have functions, failure conditions, failure modes and states 

• A system can be composed of components, and each component can have functions, failure 

modes and a failure effect code 

• Each failure condition or failure mode is allocated to a function 

• Each failure condition or mode has an association link to a state 

• There are three types of states: nominal, degraded and failed 

It should also be noted that the metamodel element ‘System’ can be applied to either the entire 

aircraft itself or a system of the aircraft (e.g. landing gear system). This solely depends on the level 

of abstraction at which modelling is being performed. 

  

Figure 3: Overview of Relationships among Safety Profile Elements 

FHA Generation 

Functional Hazard Assessments (FHAs) are performed at both the aircraft and system level of 

integration. The aircraft level FHA assesses the basic functions of the aircraft and the associated 

potential failure conditions, whereas the system level FHA considers a failure or a combination of 

system failures that affect an aircraft function. The standard form of an FHA table as defined in 

ARP4761 is shown in Figure 4. The fields shown here were used as the basis for the extension of 

the profile. The elements in the extended profile that are thus relevant to the generation of FHAs 

are depicted in Figure 5. 



   

  

 

 

Figure 4: Partial Aircraft FHA, with Example Entry, Adapted from ARP4761 (SAE International 

1996) 

 

Figure 5: Metamodel of Extended Profile for FHA Generation 

At the aircraft level, failure conditions are allocated to UseCases. All high-level functions at the 

aircraft level would involve external actors, and thus in accordance with SysML definitions, it is a 

UseCase and not a Function. On the other hand, at the system level, failure conditions belonging to 

the system of interest would be allocated to Functions. For each use case or function of interest, the 

information needed to populate each row of the FHA table is extracted from the 

FailureCondition(s) allocated to it. Sub-conditions can also be modeled and extracted with the 

derivation link. The attributes within the FailureCondition property can then be used to populate 

the rest of the table. The Flight Phase and Failure Classification entries are typically limited to a 

certain number of options, and thus enumerations are used for these attributes. This helps to 

enforce consistency in how the table is populated, and depending on the system of interest being 

modeled, more specific phases such as ‘Rejected Take-off’ or ‘Take-off to Rotation’ can be 

included in addition to what is specified in Figure 5. As the failure effect applies to and is 

generated from a specific failure condition, the FailureEffect property is connected with a 

‘generates’ link. Finally, to provide verification evidence, the failure condition is verified by a 

Fault Tree Diagram. 

FMEA Generation 

As described in the ARP4761 standard, there are two types of FMEAs: Functional FMEA and 

Piece Part FMEA. The layouts for these are displayed in Figure 6 and Figure 7 respectively. The 

information required for both FMEA types are very similar as the only difference is that the 

Functional FMEA indicates the flight phase at which the function of interest is operating in, while 



   

  

 

the Piece Part FMEA has a ‘Part Type’ column to indicate the component part type and a ‘Failure 

Effect Code’ that is specific to the component of interest. 

 

Figure 6: Partial Functional FMEA for BSCU Power Supply, with Example Entry, Adapted from 

ARP4761 

 

Figure 7: Partial Piece Part FMEA for BSCU Power Supply Monitor, with Example Entry, 

Adapted from ARP4761 

As in the case of the FHA, the fields required for both FMEAs were used as the baseline for what 

additional elements were needed, and the corresponding metamodel is specified in more detail in 

Figure 8. 

 

Figure 8: Metamodel of Extended Profile for FMEA Generation 

With the introduction of the FailureMode stereotype, the system model can thus store all the 

relevant safety information needed to produce Functional and Piece Part FMEAs. For the 

Functional FMEA, the focus is on the failure modes of functions, thus the table is populated by 

extracting all the FailureModes allocated to the function of interest. To access sub-functions, a 

traversal through the relevant activity diagrams, which effectively gives a functional breakdown of 

the high-level system function, can be performed. The attributes stored in each FailureMode can 

then be used to populate the rest of the row entry. Once again, FailureEffects are connected to 

FailureModes with a ‘generates’ link. There is also an ‘association’ link between a FailureMode 

and State. As shown in Figure 3, there are three types of states: nominal, degraded and failed. By 

introducing this specification, the state that the system enters when the failure mode occurs can be 

traced and represented within a state machine diagram for dysfunctional analysis. 



   

  

 

Piece Part FMEAs focus on the failure modes of specific parts, hence all FailureModes belonging 

to the component of interest are extracted from the model to populate the table. The ‘Component 

ID’ and ‘Part Type’ are stored as an attribute of the Component stereotype. The FailureEffectCode 

attribute is an enumeration with literals that are specific to the component and can be pre-specified, 

hence it is aggregated to and contained within the component itself and not the failure mode. In 

addition to the fields listed in the standardized FMEA tables, two more attributes are introduced to 

the FailureMode stereotype: RecommendedActions and CausalFactors. The former allows both 

system and safety engineers to suggest measures to apply corrective action to the associated failure 

mode and identify who is responsible, while the latter lists what flows through the input and output 

ports of the component. The idea here is to provide safety engineers a starting point when 

investigating possible causes for failure. 

FTA Generation 

To construct FTAs, a Safety Application can be written that uses the API to access, extract and 

manipulate model elements in the architectural model. With this capability, a fault tree diagram 

can be populated using extracted information from the internal block diagram of the system or 

component to which the top-level event/function belongs. 

To begin with, the two simplest failure cases are taken into consideration: an internal part error and 

an input error. Translating this to a fault tree graph means that for a certain output error, the fault 

can be caused by either an internal failure of the component OR an input error to the component. 

For an internal block diagram that has redundant components, an AND logic gate can be used to 

represent that all redundant components must fail for the next component to fail. These rules are 

best represented in graphical form and are hence shown in Figure 9. A simple internal block 

diagram with entry, exit and redundant components is shown on the left, while the corresponding 

fault tree is shown on the right. 

 

Figure 9: Internal Block Diagram with Corresponding Fault Tree 



   

  

 

For a given failure mode or condition (which serves as the top event of the FTA), the Safety 

Application can identify the system/component it belongs to and traverse into the internal block 

diagram of the system/component. Starting from the output port of the diagram, the application 

can be coded to navigate through the diagram towards the input port and populate the fault tree 

diagram with the possible failure events using AND and OR logic gates. 

A complete FTA typically contains logic gates and relations of a higher complexity, and hence the 

output produced by the application can only be used as a preliminary diagram. Nevertheless, this 

diagram can then be stored as a FaultTreeDiagram in the architectural model and be viewed and 

edited by both system and safety engineers. 

Requirements Management Integration 

In order to integrate requirements management into this methodology, the proposed profile 

extension introduces a direct connection between safety requirements and model elements. As 

depicted in Figure 10, ‘satisfy’ links are introduced as there are many ways in which a requirement 

can be satisfied. For example, it could be by simply adding a component to the design, proving that 

a failure mode has a certain failure effect or specifying if a failure condition has a certain 

classification. Furthermore, to account for possibilities where safety requirements are developed 

or updated as a result of either safety or model analysis, the profile also allows for ‘derivation’ 

relationships from a requirement to any model element. A model checker can then be set up to 

verify that each and every requirement has a ‘satisfy’ link to verify that all requirements within a 

module have been considered and accounted for. 

 

Figure 10: Requirements Traceability Links 

As discussed previously, the IBM ELM tool set is well suited to the proposed methodology. By 

storing requirements in DOORS Next, which is a requirements management tool hosted on the 

IBM Jazz platform, requirements can be reused in more than one module. This is particularly 

useful for aircraft systems as requirements are often relevant to multiple modules. The tool also 

has built-in automation that updates all relevant modules when a requirement is changed, enables 

engineers to understand how requirements are interconnected through a dependency tree and see 

how changing one requirement can affect other existing ones. Via the Rhapsody Model Manager 

application, DOORS Next can be linked with Rhapsody, allowing modules to be loaded into the 

Rhapsody project (IBM Corporation 2014). The connection can be configured such that 

requirements within the Rhapsody model are automatically updated if requirements are modified. 



   

  

 

Most importantly, active traceability links can be generated between model elements in Rhapsody 

and requirements in DOORS Next, a capability missing in existing methodologies. 

Summary of Proposed Approach 

In summary, the proposed methodology consists of two key parts: an extension of the SysML 

profile to include safety data; and, the introduction of a Safety Application that extracts data from 

the system model to generate safety analysis artefacts. The extended profile is introduced such that 

safety-relevant properties can be stored within the architectural model in order to facilitate the 

automatic generation of safety artefacts. The Safety Application then pulls data from the system 

model in real-time and automatically generates FHAs, FMEAs and FTAs. Manual edits to these 

safety analysis artefacts can be easily propagated back into the architectural model, which helps to 

maintain consistency between the two domains. Requirements can also be loaded directly into the 

architectural model, and by doing so, satisfaction and derivation relationships can be created 

between requirements and model elements allowing for increased traceability. 

Conclusion and Next Steps 

With the increasing complexity of aircraft systems in recent years, inconsistency between system 

and safety domains is a common challenge. This paper proposes a methodology that addresses this 

problem by integrating safety analysis into Model-Based Systems Engineering activities. By using 

the SysML language as a basis for development, the extended profile that has been introduced in 

this paper can be readily integrated into any existing modeling framework and software. 

This paper provides an outline of how this methodology should be implemented; thus further work 

will be conducted to develop this idea such that it reaches a level of maturity that can be deployed 

in an industry setting. This includes conducting a review with industry experts to obtain feedback 

and carrying out a case study to demonstrate the effectiveness of this methodology and the added 

value it brings. Additionally, in order to apply this method within an organization, a more detailed 

implementation plan will need to be produced once a software tool is specified, along with any 

minor modifications needed to comply with the organization’s existing framework. 

It is also important to reiterate that the proposed methodology only acts to support the generation 

of preliminary safety analysis, and hence cannot be used as a substitute for aircraft safety 

certification. 

Ultimately, by introducing the proposed methodology, safety considerations will be incorporated 

in earlier phases of development and hence late design changes will be avoided. System and safety 

development processes will also become more efficient and reliable, reducing both development 

times and error proneness when performing safety assessment. This will empower companies to 

become more competitive and be able to deliver safer systems, and thus resulting in the production 

of safer aircraft. 
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